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Abstract

This paper deals with the analysis of active constrained layer damping (ACLD) of laminated cylindrical composite shells

using vertically and obliquely reinforced 1–3 piezoelectric composite materials as the material of the constraining layer of

the ACLD treatment. A finite element model has been developed for analyzing the ACLD of laminated symmetric and

antisymmetric cross-ply and angle-ply composite shells integrated with the patches of such ACLD treatment. Both in-plane

and out-of-plane actuation of the constraining layer of the ACLD treatment has been utilized for deriving the finite

element model. The analysis revealed that the vertical actuation dominates over the in-plane actuation. Particular emphasis

has been placed on investigating the performance of the patches when the orientation angle of the piezoelectric fibers of the

constraining layer is varied in the two mutually orthogonal vertical planes. The analysis revealed that the vertically

reinforced 1–3 piezoelectric composites which are in general being used for the distributed sensors can be potentially used

for the distributed actuators of high-performance light-weight smart cylindrical shells.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Expediently, it was discovered that if the inherent properties of direct and converse piezoelectric effects
present in the piezoelectric materials are exploited to use these materials as distributed sensors and actuators,
respectively which are either mounted on or embedded in the flexible structures then the structures attain self-
controlling and self-monitoring capabilities [1,2]. Such flexible structures having built-in mechanisms for self-
controlling and self-monitoring capabilities are customarily known as ‘‘Smart Structures’’. Subsequently,
extensive research has been carried out during the past several years [3–11] to demonstrate the use of
piezoelectric materials for active control of vibration of high-performance light-weight smart structures. The
piezoelectric coefficients of the existing monolithic piezoelectric materials are very small. Hence, the distributed
actuators made of these monolithic piezoelectric materials need high-control voltage for satisfactory control of
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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vibrations of host structures. The research on the efficient use of these low-control-authority monolithic
piezoelectric materials led to the development of active constrained layer damping (ACLD) treatment [12]. In
ACLD treatment, the constraining layer is made of piezoelectric materials while the constrained layer is made
of viscoelastic material. The control effort necessary for causing transverse shear deformations in the low stiff
constrained viscoelastic layer of the ACLD treatment is compatible with the low-control authority of the
existing monolithic piezoelectric materials. Hence, these piezoelectric materials perform much better to
attenuate the vibration of smart structures when they are used for the constraining layer of the ACLD
treatment than when they are directly bonded to the smart structures. Also, ACLD treatment provides the
attributes of both passive and active damping occurring simultaneously because of the fact that passive
damping mechanism is integral to this treatment [12,13]. Since its inception, extensive investigations have been
performed to demonstrate the performance of ACLD treatment for active damping of plates [14,15], optimal
control of plates [16] and shells [17].

Piezoelectric composite materials have now emerged as the new class of smart materials and find wide
applications as distributed actuators and sensors of smart structures. In these new piezoelectric composite
materials, the reinforcements are made of the existing monolithic piezoelectric materials and the matrix is the
conventional epoxy. These piezoelectric composites provide wide range of effective material properties not
offered by the existing monolithic piezoelectric materials, cause anisotropic actuation and are characterized by
good conformability and strength integrity. Research on piezoelectric composite materials is mainly devoted
to the micromechanical analysis for predicting their effective properties [18–28]. As a novel work, Arafa and
Baz [29] investigated the performance of active damping piezoelectric composite for active control of an
isotropic beam. In their work, the constrained viscoelastic layer of the ACLD treatment has been considered
to be reinforced with piezoceramic fibers while the conventional isotropic layer has been used for the
constraining layer of the treatment. Among the various piezoelectric composites proposed by the researchers
till today, laminae of vertically reinforced 1–3 piezoelectric composites are commercially available [30] and are
being effectively used for underwater transducers, medical imaging applications and high-frequency ultrasonic
transducers [18,27]. The constructional feature of a lamina made of this 1–3 piezoelectric composite is that
the piezoelectric fibers are vertically reinforced in the epoxy matrix along the thickness of the lamina while the
fibers are poled vertically along their length. Since, in this lamina of 1–3 piezoelectric composite the fibers are
vertically reinforced and the ends of the fibers are in contact with the surface electrodes, the applied voltage across
these electrodes, i.e., across the thickness of the lamina creates the same electric fields in the thickness direction
both in fibers and matrix. Thus the average electric field along the thickness direction of the homogenized lamina
is equal to that in fibers and matrices. Also, since the magnitude of the piezoelectric coefficient e33 of the fiber
material is much larger than that of the piezoelectric coefficient e31, the magnitude of the effective piezoelectric
coefficient e33 of vertically reinforced 1–3 piezoelectric composite material becomes larger than that of the
effective coefficient e31 of this composite [18]. Therefore, if a voltage is applied across the surface electrodes of this
lamina, the induced normal stress (sz) in the thickness direction will be larger than the induced in-plane normal
stress (sx) and may be exploited for flexural vibration control. Hence, for these vertically reinforced 1–3
piezoelectric composites, the piezoelectric coefficient e33 is the key coefficient for electromechanical transduction.
These composites are also characterized by improved mechanical performance, electromechanical coupling
characteristics and acoustic impedance matching over the existing monolithic piezoelectric materials [18]. The
other variations of constructional features of the commercially available 1–3 piezoelectric composites are that the
piezoelectric fibers are obliquely reinforced in the matrix while they are coplanar with the vertical planes.
However, very little attention has been paid to using these commercially available vertically and obliquely
reinforced 1–3 piezoelectric composites as the material for distributed actuators of smart structures. Recently,
Ray and Pradhan [31,32] examined the performance of these vertically/obliquely reinforced 1–3 piezoelectric
composite for active damping of laminated composite beams and plates. They demonstrated that the vertical
actuation by the 1–3 piezoelectric composite actuators causes significant improvement of damping characteristics
of the laminated composite beams and plates. The laminated cylindrical shell is an important structural element
and forms many critical structures. Also, the dynamical characteristics of laminated shells are different from that
of plates. Thus a separate investigation is necessary for dynamic analysis of laminated shells. It seems that the
performance of the vertically/obliquely reinforced 1–3 piezoelectric composites has not yet been studied for the
purpose of active damping of laminated cylindrical composite shells.
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In this paper, the authors intend to investigate the performance of vertically and obliquely reinforced 1–3
piezoelectric composites as the materials of the constraining layer of ACLD treatment for active damping of
laminated cylindrical composite shells. For such investigation, three-dimensional analysis of ACLD of
laminated cylindrical composite shells integrated with the patches of ACLD treatment has been carried out by
the finite element method. The constraining layer of the ACLD treatment is considered to be made of
vertically or obliquely reinforced 1–3 piezoelectric composite materials. The effect of piezoelectric fiber
orientation in the two mutually orthogonal vertical planes on the performance of the patches of ACLD
treatment has also been investigated.
2. Finite element modeling

Fig. 1 illustrates a clamped–free laminated composite shell composed of N number of orthotropic layers.
The length, thickness and average radius of the shell are denoted by a, h and R, respectively. The top surface of
the composite shell is integrated with the patches of ACLD treatment. The constraining layer of the patches of
ACLD treatment is made of either vertically or obliquely reinforced 1–3 piezoelectric composite material. The
constructional features of such 1–3 piezoelectric composite materials have been demonstrated in Fig. 2. For
obliquely reinforced 1–3 piezoelectric composite, the piezoelectric fibers are coplanar with either the vertical xz

or the yz plane making an angle c with the z-axis. The thickness of the piezoelectric composite layer and the
viscoelastic layer are denoted by hp and hv, respectively. The middle plane of the substrate composite shell is
considered as the reference plane. The origin of the curvilinear laminate coordinate system (xyz) is located on
the reference plane such that the lines x ¼ 0 and a indicate the ends of the shells. Denoted by k

(k ¼ 1,2,3,y,N+2), the layer number of any layer of the overall shell, the thickness coordinates z of the top
and bottom surface of any (kth) layer of the shell are represented by hk+1 and hk, respectively. Also, the fiber
orientation in any layer of the substrate shell in the plane (xy) of the lamina with respect to laminate
coordinate system is denoted by y.

The overall shell to be considered here is thin and consequently the first-order shear deformation theory
(FSDT) can be used to model the axial displacements in all the layers of the overall shell. In Fig. 3, the
kinematics of axial deformations of the overall shell based on the FSDT has been illustrated. Displayed in this
figure, the variables u0 and v0 represent the generalized translational displacement of a point (x, y) on the
reference plane (z ¼ 0) along x and y directions, respectively; yx, fx and gx denote the generalized rotations of
the normals to the middle planes of the substrate shell, the viscoelastic layer and the piezoelectric composite
layer, respectively in the xz plane while yy, fy and gy represent their generalized rotations in the yz plane.
According to the kinematics of deformations illustrated in Fig. 3, the axial displacements u and v at any point
Vertically/Obliquely reinforced

1-3 Piezoelectric Composite Layer

Viscoelastic Layer

Laminated Shell

1-3 Piezoelectric Composite Layer

Vertically/Obliquely reinforcedViscoelastic Layer

Fig. 1. Schematic representation of a laminated composite shell integrated with the patches of ACLD treatment composed of vertically/

obliquely reinforced 1–3 piezoelectric composite constraining layer.
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Fig. 2. Schematic diagrams of the laminae of vertically and obliquely reinforced 1–3 piezoelectric composites. (a) Lamina of vertically

reinforced 1–3 piezoelectric composite, (b) piezoelectric fibers are coplanar with vertical xz plane and obliquely oriented, (c) piezoelectric

fibers are coplanar with vertical yz plane and obliquely oriented.

M.C. Ray, A.K. Pradhan / Journal of Sound and Vibration 315 (2008) 816–835 819
in any layer of the overall shell along x and y directions, respectively, can be expressed as

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ ðz� hz� h=2iÞyxðx; y; tÞ þ ðhz� h=2i � hz� hNþ2iÞfxðx; y; tÞ

þ hz� hNþ2igxðx; y; tÞ (1)

vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ ðz� hz� h=2iÞyyðx; y; tÞ þ ðhz� h=2i � hz� hNþ2iÞfyðx; y; tÞ

þ hz� hNþ2igyðx; y; tÞ (2)

in which, a function within the bracket /S represents the appropriate singularity functions.
Since the transverse actuation of the constraining layer of the ACLD treatment will be exploited for the

control of vibration of the shells, the transverse normal strain in the overall shell must be considered in the
model. Hence, for the sake of brevity, as the shell considered here is thin, the transverse displacement (w) at
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any point in the substrate shell, viscoelastic layer and the piezoelectric composite layer may be assumed to be
linearly varying across their thicknesses. Thus the transverse displacement at any point in the overall shell is
assumed as

wðx; y; z; tÞ ¼ w0ðx; y; tÞ þ ðz� hz� h=2iÞyzðx; y; tÞ þ ðhz� h=2i � hz� hNþ2iÞfzðx; y; tÞ

þ hz� hNþ2igzðx; y; tÞ (3)

in which w0 refers to the transverse displacement at any point on the reference plane; yz, fz and gz are the
generalized displacements representing the gradients of the transverse displacement in the substrate shell,
viscoelastic layer and the piezoelectric composite layer, respectively, with respect to the thickness coordinate (z).

For the ease of analysis, the generalized displacement variables are grouped into the two following vectors:

fdtg ¼ ½ u0 v0 w0 �
T and fdrg ¼ ½ yx yy yz fx fy fz gx gy gz �

T (4)

In order to implement the selective integration rule for computing the element stiffness matrices corresponding
to the transverse shear deformations, the state of strain at any point in the overall shell is divided into the
following two strain vectors febg and fesg:

febg ¼ ½�x �y �xy �z�
T and fesg ¼ ½�xz �yz�

T (5)

in which ex; ey; ez are the normal strains along x, y and z directions, respectively; exy is the in-plane shear strain;
and exz, eyz are the transverse shear strains. By using the displacement fields (Eqs. (1)–(3)), the linear
strain–displacement relations and Eq. (5), the vectors febgc; febgv and febgp defining the state of in-plane and
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transverse normal strains at any point in the substrate composite shell, viscoelastic layer and the active
constraining layer, respectively, can be expressed as

febgc ¼ f�btg þ ½Z1�f�brg; febgv ¼ f�btg þ ½Z2�f�brg and febgp ¼ f�btg þ ½Z3�febrg (6)

Similarly, the vectors {As}c, {As}v and {As}p defining the state of transverse shear strains at any point in the
substrate composite shell, the viscoelastic layer and the active constraining layer, respectively, can be expressed as

fesgc ¼ f�stg þ ½Z4�f�srg; fesgv ¼ f�stg þ ½Z5�f�srg and fesgp ¼ f�stg þ ½Z6�f�srg (7)

The various matrices appearing in Eqs. (6) and (7) have been defined in the Appendix while the generalized strain
vectors are given by

febtg ¼
qu0

qx

qv0

qy
þ

w

R

qu0

qy
þ

qv0

qx
0

� �T
; festg ¼

qw0

qx

qw0

qy
�

v0

R

� �T
,

febrg ¼
qyx

qx

qyy

qy

qyx

qy
þ

qyy

qx
yz

qfx

qx

qfx

qx

qfx

qy
þ

qfy

qx
fz

"

qgx

qx

qgy

qy

qgx

qy
þ

qgy

qx
gz

#T
and

fesrg ¼ yx yy fx fy gx gy

qyz

qx

qyz

qy

qfz

qx

qfz

qy

qgz

qx

qgz

qy

� �
(8)

Similar to the strain vectors given by Eq. (5), the state of stresses at any point in the overall shell are described by
the following stress vectors:

frbg ¼ ½ sx sy sxy sz �T and frsg ¼ ½ sxz syx �T (9)

where sx, sy, sz are the normal stresses along x, y and z directions, respectively; sxy is the in-plane shear stresses;
sxz and syz are the transverse shear stresses.

The constitutive relations for the material of any orthotropic layer of the substrate shell are given by

frk
bg ¼ ½C

k
b �fe

k
bg and frk

s g ¼ ½C
k
s �fe

k
s g; ðk ¼ 1; 2; 3; . . . ;NÞ (10)

where

½Ck
b � ¼

C̄
k

11 C̄
k

12 C̄
k

16 C̄
k

13

C̄
k

12 C̄
k

22 C̄
k

26 C̄
k

23

C̄
k

16 C̄
k

26 C̄
k

66 C̄
k

36

C̄
k

13 C̄
k

23 C̄
k

36 C̄
k

33

2
6666664

3
7777775
; ½Ck

s � ¼
C̄

k

55 C̄
k

45

C̄
k

45 C̄
k

44

2
4

3
5

and C̄
k

ij (i, j ¼ 1,2,3,y,6) are the transformed elastic coefficients with respect to the reference coordinate
system. The material of the viscoelastic layer is assumed to be linearly viscoelastic and isotropic and is
modeled by using the complex modulus approach. In the complex modulus approach, the shear modulus G

and the Young’s modulus E of the viscoelastic material are given by

G ¼ G0ð1þ iZÞ and E ¼ 2Gð1þ uÞ (11)

in which G0 is the storage modulus, u is the Poisson’s ratio and Z is the loss factor at a particular operating
temperature and frequency. Employing the complex modulus approach, the constitutive relations for the
material of the viscoelastic layer (k ¼ N+1) can also be represented by Eq. (10) with C̄

Nþ1

ij (i, j ¼ 1,2,3,y,6)
being the complex elastic constants [13,14].

Following Smith and Auld [18], constitutive relations for the vertically reinforced (c ¼ 01) 1–3
piezocomposites are given by

frg ¼ ½C�pfeg � ½e�fEg and fDg ¼ ½e�Tfeg þ ½e�fEg (12)
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in which [C]p, [e] and [e] are the effective elastic, piezoelectric and dielectric constant matrices, respectively. The
explicit form of [C]p resembles that of a specially orthotropic material while the explicit forms of [e] and [e] are
given by

½e�T ¼

0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0

2
64

3
75 and ½e� ¼

�11 0 0

0 �22 0

0 0 �33

2
64

3
75 (13)

In Eq. (12), expressions for the stress {r} and the strain {e} vectors are not similar to those given in Eqs. (5)
and (9), but are given by

frg ¼ ½sx sy sz syz sxz sxy�
T and feg ¼ ½�x �y �z �yz �xz �xy�

T (14)

while the electric field {E} and the electric displacement {D} vectors are given by

fEg ¼ ½Ex Ey Ez �T and fDg ¼ ½Dx Dy Dz �T (15)

in which Ex, Ey and Ez are the electric fields along x, y and z directions, respectively and Dx, Dy and Dz are the
corresponding electric displacements. When fibers of the 1–3 piezocomposite are coplanar with respect to
the vertical xz- or yz-plane but their orientation angle with respect to the z-axis is c as shown in Fig. 2, the
constitutive relations for such obliquely reinforced 1–3 piezocomposite with respect to the reference
coordinate system (xyz) can be derived by employing the appropriate transformation law as follows:

frg ¼ ½C�pf�gp � ½e�fEg and fDg ¼ ½e�Tfeg þ ½e�fEg (16)

where, ½C̄�p ¼ ½T�
T½C�p½T�, ½ē� ¼ ½T�

T½e�½R� and ½ē� ¼ ½R��1½e�½R�. For fibers coplanar with the vertical xz plane
as shown in Fig. 2, the transformation matrices [T] and [R] are given by

½T��1 ¼

m2 0 n2 0 �mn 0

0 1 0 0 0 0

n2 0 m2 0 mn 0

0 0 0 m 0 n

2mn 0 �2mn 0 m2 � n2 0

0 0 0 �n 0 m

2
666666664

3
777777775

and ½R� ¼

m 0 n

0 1 0

�n 0 m

2
64

3
75 (17)

while for fibers coplanar with the vertical yz plane these matrices are given by

½T��1 ¼

1 0 0 0 0 0

0 m2 n2 �mn 0 0

0 n2 m2 mn 0 0

0 2mn �2mn m2 � n2 0 0

0 0 0 0 m �n

0 0 0 0 n m

2
666666664

3
777777775

and ½R� ¼

1 0 0

0 m n

0 �n m

2
64

3
75 (18)

in which m ¼ cosc and n ¼ sinc In the present work, the applied electric field is considered only in the z

direction and the stress and strain vectors are defined in a different manner as given by Eqs. (9) and (5). Hence,
the constitutive equations given by Eq. (16) cannot be directly used in the present finite element formulation
and are rearranged as follows:

frk
bg ¼ ½C̄

k

b �fe
k
bg þ ½C̄

k

bs�fesg � febgEz; frsg ¼ ½C̄
k

bs�
Tfebg þ ½C̄

k

s �fesg � fesgEz; and

Dz ¼ febg
Tfek

bg þ fesg
Tfek

s g þ ē33Ez; k ¼ N þ 2 (19)

It may be noted from Eqs. (19) that the transverse shear strains are coupled with the in-plane normal strains
due to the orientation of piezoelectric fibers in the vertical xz- or yz-plane and the corresponding coupling
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elastic constant matrices ½C̄
Nþ2

bs � are

½C̄
Nþ2

bs � ¼
C̄15 C̄25 0 C̄35

0 0 C̄46 0

" #
or ½C̄

Nþ2

bs � ¼
0 0 C̄56 0

C̄14 C̄24 0 C̄34

" #
(20)

as the piezoelectric fibers are coplanar with the vertical xz- or the vertical yz-plane, respectively. Note that if
fibers are coplanar with both xz- and yz-planes (i.e. c ¼ 01), this coupling matrix becomes a null matrix. Also,
in the augmented form of constitutive relations (19) the transformed effective piezoelectric constant matrices
{eb} and {es} are given by

febg ¼ ½ ē31 ē32 ē36 ē33 �T and fesg ¼ ½ ē35 ē34 �T (21)

The principle of virtual work is employed to derive the governing equations of the overall shell/ACLD
system and can be expressed as [14]

XNþ2
k¼1

Z
O
ðdfek

bg
Tfrk

bg þ dfek
s g

Tfrk
s g � dEz�̄33Ez � dfdtg

Trkf€dtgÞdO�
Z

A

dfdtg
T ff gdA ¼ 0 (22)

in which rk is the mass density of the kth layer, {f} is the externally applied surface traction acting over a
surface area A and O represents the volume of the concerned layer. Since the shells under study are considered
to be thin, the rotary inertia of the overall shell has been neglected in estimating the kinetic energy. The overall
shell is discretized by eight-noded isoparametric quadrilateral elements. Following Eq. (9), the generalized
displacement vectors, associated with the ith (i ¼ 1,2,3,y,8) node of the element can be written as

fdtig ¼ ½ u0i v0i w0i �
T and fdrig ¼ ½ yxi yyi yzi fxi fyi fzi gxi gyi gzi �

T (23)

Thus the generalized displacement vectors at any point within the element can be expressed in terms of the
nodal generalized displacement vectors fde

t g and fd
e
rg as follows:

fdtg ¼ ½Nt�fd
e
t g and fdrg ¼ ½Nr�fd

e
rg (24)

in which

½Nt� ¼ ½Nt1 Nt2 � � � Nt8 �
T; ½Nr� ¼ ½Nr1 Nr2 � � � Nr8 �

T; Nti ¼ niIt; Nri ¼ niIr,

fde
t g ¼ fde

t1g
T fde

t2g
T � � � fde

t8g
T

h iT
and fde

rg ¼ fde
r1g

T fde
r2g

T � � � fde
r8g

T
h iT

(25)

while It and Ir are the (3� 3) and (9� 9) identity matrices, respectively and ni is the shape function of natural
coordinates associated with the ith node. Making use of the relations given by Eqs. (6)–(8) and (24), the strain
vectors at any point within the element can be expressed in terms of the nodal generalized displacement vectors
as follows:

febgc ¼ ½Btb�fd
e
t g þ ½Z1�½Brb�fd

e
rg; febgv ¼ ½Btb�fd

e
t g þ ½Z2�½Brb�fd

e
rg,

febgp ¼ ½Btb�fd
e
t g þ ½Z3�½Brb�fd

e
rg; fesgc ¼ ½Bts�fd

e
t g þ ½Z4�½Brs�fd

e
rg,

fesgv ¼ ½Bts�fd
e
t g þ ½Z5�½Brs�fd

e
rg and fesgp ¼ ½Bts�fd

e
t g þ ½Z6�½Brs�fd

e
rg (26)

in which the nodal strain–displacement matrices [Btb], [Brb], [Bts] and [Brs] are given by

½Btb� ¼ ½Btb1 Btb2 � � � Btb8 �; ½Brb� ¼ ½Brb1 Brb2 � � � Brb8 �;

½Bts� ¼ ½Bts1 Bts2 � � � Bts8 � and ½Brs� ¼ ½Brs1 Brs2 � � � Brs8 �
(27)

The submatrices of [Btb], [Brb], [Bts] and [Brs] as shown in Eq. (27) have been explicitly presented in the
Appendix. On substitution of Eqs. (20) and (26) into Eq. (22) and recognizing that Ez ¼ �V/hp with V being
the applied voltage across the thickness of the piezoelectric layer, one can derive the following open-loop
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equations of motion of an element integrated with the ACLD treatment:

½Me�f€d
e

t g þ ½K
e
tt�fd

e
t g þ ½K

e
tr�fd

e
rg ¼ fF

e
tpgVþ fF

eg (28)

½Ke
rt�fd

e
t g þ ½K

e
rr�fd

e
rg ¼ fF

e
rpgV (29)

The elemental mass matrix ([Me]), the elemental stiffness matrices (½Ke
tt�; ½K

e
tr�; ½K

e
rr�), the elemental electro-

elastic coupling vectors (fFe
tpg; fF

e
rpg), the elemental load vector {Fe} and the mass parameter (m̄) appearing in

Eqs. (28) and (29) are given by

½Me� ¼

Z ae

0

Z be

0

m̄½Nt�
T½Nt�dxdy; ½Ke

tt� ¼ ½K
e
tb� þ ½K

e
ts� þ ½K

e
tbs�pb þ ½K

e
tbs�ps,

½Ke
tr� ¼ ½K

e
trb� þ ½K

e
trs� þ

1
2
ð½Ke

trbs�pb þ ½K
e
rtbs�

T
pb þ ½K

e
trbs�ps þ ½K

e
rtbs�

T
psÞ,

½Ke
rt� ¼ ½K

e
tr�

T; ½Ke
rr� ¼ ½K

e
rrb� þ ½K

e
rrs� þ ½K

e
rrbs�pb þ ½K

e
rrbs�ps; fF

e
tpg ¼ fF

e
tbgp þ fF

e
tsgp,

fFe
rpg ¼ fF

e
rbgp þ fF

e
rsgp; fF

eg ¼

Z ae

0

Z be

0

½Nt�
Tff gdxdy and m̄ ¼

XNþ2
k¼1

rkðhkþ1 � hkÞ (30)

It should be noted from Eq. (30) that the elemental stiffness matrices associated with the transverse shear
strains are derived separately such that the selective integration rule can be employed in a straight-forward
manner to avoid the shear locking problem. The elemental stiffness matrices and the electro-elastic coupling
vectors appearing in Eq. (30) corresponding to the bending-stretching deformations are

½Ke
tb� ¼

Z
A

½Btb�
T ð½Dtb� þ ½Dtb�v þ ½Dtb�pÞ½Btb�dxdy; ½Ke

tbs�pb ¼

Z
A

½Btb�
T ½Dtbs�p½Bts�dxdy,

½Ke
trb� ¼

Z
A

½Btrb�
T ð½Dtrb� þ ½Dtrb�v þ ½Dtrb�pÞ½Brb�dxdy,

½Ke
trbs�pb ¼

Z
A

½Btb�
T ½Dtrbs�p½Brs�dxdy; ½Ke

rtbs�pb ¼

Z
A

½Brb�
T ½Drtbs�p½Bts�dxdy,

½Ke
rrb� ¼

Z
A

½Brb�
T ð½Drrb� þ ½Drrb�v þ ½Drrb�pÞ½Brb�dxdy; ½Ke

rrbs�pb ¼

Z
A
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T ½Drrbs�p½Brs�dxdy,

fFe
tbgp ¼

Z
A

½Btb�
T fDtbgpdxdy; fFe

rbgp ¼

Z
A

½Brb�
T fDrbgpdxdy (31)

and those associated with the transverse shear deformations are

½Ke
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Z
A

½Bts�
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Z
A
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T
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½Ke
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Z
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Z
A

½Bts�
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T
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Z
A
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Z
A

½Brs�
TfDrsgpdxdy (32)
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The various rigidity matrices and the rigidity vectors for electro-elastic coupling appearing in the above
elemental matrices are given by

½Dtb� ¼
XN

k¼1

Z hkþ1

hk

½C̄
k

b �dz; ½Dtrb� ¼
XN

k¼1

Z hkþ1

hk
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T½Ck

b �½Z1�dz,
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It may be noted now that since the elastic constant matrix of the viscoelastic layer is complex, the stiffness
matrices of an element integrated with the ACLD treatment are complex. For an element without integrated
with the ACLD treatment, the electro-elastic coupling matrices become null vectors and the elemental
stiffness matrices will be real. It should also be noted that as the stiffness matrices associated with the
transverse shear strains are derived separately, one can employ the selective integration rule to avoid the so-
called shear locking problem in case of thin shells. Finally, the elemental equations of motion are assembled to
obtain the open-loop global equation of motion of the overall shell integrated with the ACLD patches as
follows:

½M�f €Xg þ ½Ktt�fXg þ ½Ktr�fXrg ¼
Xq

j¼1

fF
j
tpgV

j þ fFg (34)

and

½Krt�fXg þ ½Krr�fXrg ¼
Xq

j¼1

fFj
rpgV

j (35)

where [M] is the global mass matrix, [Ktt], [Ktr] and [Krr] are the global stiffness matrices, {Ftp}, {Frp} are the
global electro-elastic coupling vectors, {X} and {Xr} are the global nodal generalized displacement vectors, {F}
is the global nodal force vector, q is the number of patches and Vj is the voltage applied to the jth patch. Since
the elemental stiffness matrices of an element augmented with the ACLD treatment are complex, the global
stiffness matrices become complex and the energy dissipation characteristics of the overall shell are attributed
to the imaginary part of these matrices. Hence, the global equations of motion as derived above also represent
the passive (uncontrolled) constrained layer damping of the substrate shell when the constraining layer is not
subjected to any control voltage following a derivative control law.
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3. Closed-loop model

It is known that the ACLD treatment incorporates additional damping into the vibrating structures. This is
accomplished by activating the constraining layer of each patch of the treatment with a control voltage
proportional to the transverse velocity of a point. The location of this point for a specific patch will be defined
in the next section. Thus the control voltage for each patch can be expressed in terms of the derivatives of the
global nodal degrees of freedom as follows:

Vj ¼ �k
j
d _w ¼ �k

j
d ½U

j
t�f
_Xg � k

j
dðh=2Þ½U

j
r�f
_Xrg (36)

where, k
j
d is the control gain for the jth patch, ½U

j
t� and ½U

j
r� are the unit vectors for expressing the transverse

velocity of the point concerned in terms of the derivative of the global nodal generalized translational
displacements. Substituting Eq. (36) into Eqs. (34) and (35), the final equations of motion governing the
closed-loop dynamics of the overall shell/ACLD system can be obtained as follows:

½M�f €Xg þ ½Ktt�fXg þ ½Ktr�fXrg þ
Xm

j¼1

k
j
dfF

j
tpg½U

j
t�f
_Xg þ

Xm

j¼1

k
j
dðh=2ÞfF

j
tpg½U

j
r�f
_Xrg ¼ fFg (37)

and

½Krt�fXg þ ½Krr�fXrg þ
Xm

j¼1

k
j
dfF

j
rpg½U

j
t�f
_Xg þ

Xm

j¼1

k
j
dðh=2ÞfF

j
rpg½U

j
r�f
_Xrg ¼ 0 (38)

4. Results and discussions

In this section, the numerical results obtained by the finite element model derived in the previous section
have been presented. Symmetric as well as antisymmetric cross-ply and antisymmetric angle-ply thin
cantilevered cylindrical shells integrated with two patches of ACLD treatment are considered as the numerical
examples. The patches are placed 1801 apart from each other on the outer surfaces of the shells and one of the
ends of the patches is fixed at the clamped end of the shells. Note that the locations of the patches correspond
to an optimal placement of ACLD treatments such that the controllability of the first two modes (1,2) and
(1,1) becomes maximum [17]. The length of the patches is considered to be 66.67% of the length of the shells.
Unless otherwise mentioned, the width of the patches is assumed to be one sixth of the outer circumference of
the shells. PZT-5H/spur composite with 60% fiber volume fraction has been considered for the material of the
constraining layer of the ACLD treatment. The elastic and piezoelectric properties of the vertically reinforced
1–3 piezoelectric composite layer with 60% fiber volume fraction are [32]

C11 ¼ 9:29GPa; C12 ¼ 6:18GPa; C13 ¼ 6:05GPa; C33 ¼ 35:44GPa; C23 ¼ C13,

C44 ¼ 1:58GPa; C66 ¼ 1:54GPa; C55 ¼ C44; e31 ¼ �0:1902C=m
2; e33 ¼ 18:4107C=m2

The transformation relations given by Eqs. (16)–(18) can be used to obtain the elastic and piezoelectric
properties of the obliquely (c 6¼01) reinforced 1–3 piezoelectric composite layer. The material properties
considered for the orthotropic layers of the substrate shells are assumed as follows:

EL ¼ 172GPa; EL=ET ¼ 25; GLT ¼ 0:5ET ; nLT ¼ 0:25

in which the symbols have the usual meaning. The thicknesses of the constraining 1–3 piezoelectric composite
layer, the viscoelastic layer and the laminated shells are considered to be 250 mm, 200 mm and 0.003m,
respectively, while the orthotropic layers of the substrate shells are of equal thickness. Also, the length and the
value of R/h for the shells are considered as 1m and 50, respectively. The complex shear modulus, Poisson’s
ratio and the density of the viscoelastic constrained layer are used as 20(1+i)MNm�2, 0.49 and 1140 kgm�3,
respectively [15].

In order to verify the validity of the present finite element model, the natural frequencies of the shells
integrated with the inactivated patches of negligible thickness are first computed and subsequently compared
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with the existing analytical results [33] of the identical shells without integrated with the patches. Table 1
demonstrates this comparison of the fundamental natural frequencies of certain shells. The nondimensional
frequency parameter $ used for a particular shell has been considered according to the reference shown in
Table 1 with which the present result for that shell is compared. It may be observed from this table that the
results are in excellent agreement validating the model derived here.

The open-loop and closed-loop behavior of the shells are studied by the frequency response functions
evaluated at a point (a, 0, h/2) on the top surface of the shells. A time-harmonic point force of magnitude 1N
is considered to act at the same point to excite the first few modes of the shells. The control voltage supplied to
each patch is negatively proportional to the velocity of the point located on the outer shell surface that
corresponds to the midpoint of the free width of the patch. The control gains are arbitrarily selected such that
the first few modes are satisfactorily controlled while the value of control voltage is nominal. Figs. 4–6
illustrate the frequency response functions of clamped–cross-ply (01/901/01), antisymmetric cross-ply (01/901/
01/901) and antisymmetric angle-ply (�451/451/�451/451) shells, respectively when the fiber orientation angle
(c) in the constraining layer is 01. These figures display both uncontrolled and controlled responses and clearly
reveal that the constraining layer made of vertically reinforced 1–3 piezoelectric composite material being
studied here significantly attenuates the amplitude of vibrations, enhancing the damping characteristics of the
laminated composite shells over the passive damping (uncontrolled). The maximum values of the control
voltages required to compute the controlled responses presented in Figs. 4–6 have been found to be quite low
and are illustrated in Fig. 7 for the symmetric cross-ply (01/901/01) shell only. In order to investigate the
contribution of vertical actuation in improving the damping characteristics of the shells as demonstrated in
Figs. 4–6, active control responses of the symmetric cross-ply cantilever shell for a particular value of gain
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Fig. 4. Frequency response functions for the transverse displacement w (a, 0, h/2) of a cantilever symmetric cross-ply (01/901/01) shell

(R/h ¼ 50, c ¼ 01).

Table 1

Comparison of fundamental natural frequency parameters $ of clamped–free shells

Shell type R/h a/R Source $

01/901/01 20 5 Present 0.4910

Analytical [33] 0.4899

01/901 20 5 Present 0.5620

Analytical [33] 0.5581
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(1500) are plotted in Fig. 8 with and without considering the values of e33 and e31. Note that when the value of
e31 is zero and that of e33 is nonzero, the vertical actuation of the active constraining layer of the ACLD
treatment is responsible for increasing the transverse shear deformation of the viscoelastic constrained layer
over the passive counterpart resulting in improved damping of the smart shell over its passive damping. On the
other hand, if e33 is zero and e31 is nonzero, the in-plane actuation of the active constraining layer causes
increase in the transverse shear deformation of the viscoelastic core of the ACLD treatment leading to the
improved overall damping of the smart shell. It is evident from Fig. 8 that the contribution of the piezoelectric
coefficient e33 of the constraining vertically reinforced 1–3 piezoelectric composite layer on the attenuating
capability of the ACLD treatment is significantly larger than that of the piezoelectric coefficient e31 of the
constraining layer for controlling the modes displayed in Fig. 8. Although not shown here, similar results are
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also obtained for antisymmetric cross-ply and angle-ply shells. Since the piezoelectric coefficient e33 of the 1–3
piezoelectric composite constraining layer has major contribution in improving the active damping of smart
shells as manifested by Fig. 8, one must consider the transverse normal strain of the constraining layer of the
ACLD treatment even if it is made of monolithic piezoelectric materials with |e33|4|e31| for accurate
theoretical analysis of active damping of smart structures.

The effect of variation of piezoelectric fiber angle in the vertical xz and yz planes on the performance of the
patches has been studied. The maximum value of fiber orientation angle (c) in the commercially available
obliquely reinforced 1–3 piezoelectric composite is 451 [30]. Hence, for studying the effect of piezoelectric fiber
orientation on the performance of the patches, the orientation angle (c) of the fibers is varied from 01 to 451.
In this regard, it should be noted that for investigating the effect of variation of piezoelectric fiber angle (c) in
the constraining layer of the patches on the performance of the patches, the value of c has been smoothly
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varied to compute the controlled responses. However, for the sake of clarity in the plots, the responses
corresponding to the four specific values of c have been presented such that the optimum performance of the
patches can be demonstrated. Figs. 9 and 10 demonstrate the effect of piezoelectric fiber orientation on the
performance of the patches for improving the damping characteristics of cantilever symmetric cross-ply
substrate shells when the orientation of the piezoelectric fibers is varied in the vertical xz and yz plane,
respectively. These figures illustrate that the attenuating capability of the patches becomes maximum when the
orientation angle (c) of the fibers in xz and yz plane is 01. Fig. 11 demonstrates the effect of variation of
piezoelectric fiber orientation angle (c) in the xz plane on the performance of the patches for improving the
damping characteristics of a four-layered cantilever antisymmetric cross-ply substrate shell. It may be
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observed from this figure that the attenuating capability of the patches becomes maximum for controlling the
first and second modes if the fiber orientation angle (c) is 451 and 01, respectively. When the fiber orientation
is varied in yz plane, the attenuating capability of the patches for controlling these modes becomes maximum
when the fiber orientation angle (c) is 01 as shown in Fig. 12. For a four-layered antisymmetric angle-ply shell,
Figs. 13 and 14 demonstrate the effect of variation of piezoelectric fiber orientation in xz and yz planes,
respectively, on the performance of the patches for improving the damping characteristics of a four-layered
cantilever antisymmetric angle-ply (�451/451/�451/451) substrate shell. It may be observed from these figures
that the controllability of the patches for controlling both modes of the shell becomes maximum when the
orientation angle (c) of the fibers in xz plane is 451.
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5. Conclusions

In this paper, a study has been carried out to investigate the performance of vertically and obliquely
reinforced 1–3 piezoelectric composite materials as the material for distributed actuator of smart laminated
composite shells. A finite element model has been developed to describe the dynamics of the shells integrated
with the patches of ACLD treatment and the constraining layer of the ACLD treatment is considered to be
composed of the vertically reinforced 1–3 piezoelectric composite material. Unlike the existing finite element
models of smart structures integrated with ACLD treatment, the derivation of the present finite element model
includes the transverse deformation of the substrate shells, the constrained viscoelastic layer and the
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constraining 1–3 piezoelectric composite layer of the ACLD treatment along the thickness (i.e. z) direction
such that both vertical and in-plane actuations of the constraining layer of the patches can be utilized for
active damping of the shells. The finite element model is based on FSDT. Symmetric/antisymmetric cross-ply
and antisymmetric angle-ply laminated cantilever shells are considered for evaluation of numerical results.
Two patches of ACLD treatment are used which are optimally placed on the outer surface of the shells such
that the first two modes are efficiently controlled. The frequency responses of the symmetric cross-ply,
antisymmetric cross-ply and angle-ply composite shells indicate that the active constraining layer of the
ACLD treatment made of vertically reinforced piezoelectric composite material significantly enhances the
damping characteristics of the shells over the passive damping. The analysis revealed that if the vertically
reinforced 1–3 piezoelectric composite material is used for the constraining layer of ACLD treatment, then the
contribution of vertical actuation of the constraining layer alone for improving the active damping
characteristics of the smart composite shells is significantly larger than that due to the in-plane actuation of the
constraining layer alone. The fundamental differences between the existing analyses of ACLD and the present
analysis are that both in-plane and vertical actuations of the constraining layer of the present ACLD
treatment have been utilized in the present model for improving the active damping and vertical actuation
dominates over the in-plane actuation while the existing analyses are only concerned with the utilization of in-
plane actuation of the constraining layer. It is important to note from the present investigation that the
variation of orientation angle of the piezoelectric fibers of the constraining layer in the vertical xz and yz

planes of the shells affects the performance of the patches. The performance of the patches becomes maximum
for controlling the symmetric cross-ply shells when the orientation angle (c) of the fibers in xz and yz planes is
01. To attain the best performance of the patches for controlling the first mode of antisymmetric cross-ply
shells, the piezoelectric fibers of the constraining layer should be oriented in xz plane and the orientation angle
(c) should be 451 while for controlling the second mode the orientation angle should be 01. If the constraining
layer of the patches is made of obliquely reinforced 1–3 piezoelectric composite and the orientation angle of
the piezoelectric fibers is 451 in xz plane, then the performance of the patches becomes maximum for
controlling the four-layered antisymmetric angle-ply (�451/451/�451/451) shell.

Appendix

In Eqs. (6) and (7), the matrices [Z1], [Z2], [Z3], [Z4], [Z5] and [Z6] are given by

½Z1� ¼ ½ ½Z̄1� ~o ~o �; ½Z2� ¼ ½ ðh=2ÞI ½Z̄2� ~o �; ½Z3� ¼ ½ ðh=2ÞI hvI ½Z̄3� �,

½Z4� ¼ ½ ½Z̄4� ō ō zĪ ō ō �; ½Z5� ¼
h

2R
I1 ½Z̄5� ō ðh=2ÞĪ ðz� h=2ÞĪ ō

� �
,

½Z6� ¼
h

2R
I1

hv

R
I1 Z̄6 ðh=2ÞĪ hvĪ ðz� hNþ2ÞĪ

� �

in which

½Z̄1� ¼

z 0 0 0

0 z 0
z

R

0 0 z 0

0 0 0 1

2
666664

3
777775; ½Z̄2� ¼

ðz� h=2Þ 0 0 0

0 ðz� h=2Þ 0
ðz� h=2Þ

R

0 0 ðz� h=2Þ 0

0 0 0 1

2
6666664

3
7777775
,

½Z̄3� ¼

ðz� hNþ2Þ 0 0 0

0 ðz� hNþ2Þ 0 ðz� hNþ2Þ=R

0 0 ðz� hNþ2Þ 0

0 0 0 1

2
666664

3
777775,
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½Z̄4� ¼

1 0

0
z

R

2
4

3
5; ½Z̄5� ¼

1 0

0 1� ðz� h=2Þ=R

" #
; ½Z̄6� ¼

1 0

0 1� ðz� hNþ2Þ=R

" #
,

I ¼

1 0 0 0

0 1 0
1

R

0 0 1 0

0 0 0 0

2
6666664

3
7777775
; I1 ¼

0 0

0 �1

" #
; Ī ¼

1 0

0 1

" #
; ō ¼

0 0

0 0

" #
and ~o ¼

ō ō

ō ō

" #

The various submatrices Btbi, Btsi, Brbi and Brsi appearing in Eq. (27) are given by

Btbi ¼

qni

qx
0 0

0
qni

qy
1=R

qni

qy

qni

qx
0

0 0 0

2
66666666664

3
77777777775
; Btsi ¼

0 0
qni

qx

0 �1=R
qni

qy

2
6664

3
7775; Brbi ¼

B̄rbi 0
_

0
_

0
_

B̄rbi 0
_

0
_

0
_

B̄rbi

2
66664

3
77775,

B̄rbi ¼

qni

qx
0 0

0
qni

qy
0

qni

qy

qni

qx
0

0 0 1

2
66666666664

3
77777777775
; Brsi ¼

I

Þ

�0 �0

�0 I

Þ

�0

�0 �0 I

Þ

B̄rsi
�0 �0

�0 B̄rsi
�0

�0 �0 B̄rsi

2
66666666666664

3
77777777777775
; B̄rsi ¼

0 0
qni

qx

0 0
qni

qy

2
6664

3
7775 and

I

Þ

¼
1 0 0

0 1 0

" #

where in 0
_
; and �0 are the (4� 3) and (2� 3) null matrices, respectively.
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